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ABSTRACT 
Ability-based design (Wobbrock et al. 2011, 2018) ofers conceptual 
guidance for its use in designing accessible systems, but the con-
struct of “ability” itself—a crucial notion for ability-based design—is 
surprisingly elusive and absent from extant accounts. Diferent 
disciplines ofer disparate notions regarding defnitions and mea-

sures of “ability,” but ability-based design has yet to avail itself of 
these notions in its operationalization. To address this gap, this 
work reviews literature that quantifes motor abilities, provides 
guidance to distill metrics for human-computer interaction, and 
conceptualizes how motor ability should be quantifed for ability-
based design. We ofer a three-dimensional framework composed 
of the user, context, and task, and we locate various metrics for 
ability to be used when implementing ability-based designs. We 
support this new conceptualization with example personas that 
occupy this three-dimensional space. This work can inform those 
using ability-based design to create systems that are responsive to 
users’ abilities. 

CCS CONCEPTS 
• Human-centered computing → Accessibility theory, con-
cepts and paradigms; User models. 
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1 INTRODUCTION 
“Ability” is a core, but often implied, concept in human-computer 
interaction (HCI) and accessibility; for example, speech-language 
pathologists work with patients to assign augmentative and alter-
native communication (AAC) technologies based on patients’ abili-
ties [19], usability professionals study how fast and efectively users 
are able to navigate through websites [11], and researchers mea-

sure text entry efciency when evaluating new input devices [135]. 
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These engagements with “ability” in HCI and accessibility are often 
unidirectional in the sense that information is obtained about the 
design of systems based on their usage, but systems come to learn 
nothing of their users’ abilities and have no capacity for represent-
ing those abilities even if they did [124, 125]. By contrast, some 
authors have envisioned a more bidirectional user-system relation-
ship, where a user acts on a system through their abilities, and 
the system responds to the user accordingly. For example, Gajos 
et al. [25–27] showed how desktop user interfaces could be auto-
matically generated in response to a user’s observed abilities as 
demonstrated in a testbed. Evenson et al. [18] described systems 
designed to respond to users’ latent abilities as they arise in dy-
namic worlds. Wobbrock et al. [124, 125] articulated a vision of 
ability-based design, where systems model and respond to a user’s 
situated abilities. However, even Wobbrock et al.’s articulation of 
ability-based design stops short of conceptualizing what “ability” 
actually means. 

Ability-based design [124, 125] is now over a dozen years old, and 
has highlighted the importance of developing computing systems 
that are responsive to users’ abilities. Numerous researchers and de-
signers have engaged with the concept, including for young adults 
with intellectual disabilities [7, 8], psychomotor and cognitive user 
modeling for wheelchair users [40–42], smartphone interactions 
for older adults [90–92], children with motor disabilities [110], im-

proving pointing techniques in graphical user interfaces [120], and 
for designing accessible outdoor activities [2]. It has even inspired 
Android applications capable of detecting certain abilities and rec-
ommending suitable assistive technologies [118]. But despite its 
uptake, ability-based design has never satisfactorily articulated 
“ability.” For a concept so central to this design perspective to have 
remained unexamined is concerning; we therefore aim to address 
that omission in this work. 

Most manifestations of ability-based design take piecemeal and 
ad hoc approaches to considering or modeling ability, approaches 
that are narrowly in service of the creation of a specifc product 
but that lack any deep engagement with ability itself (e.g., [25, 
70, 71, 91]). These disparate manifestations refect the limited un-
derstanding of how to utilize models of ability beyond HCI that 
clinicians and researchers in other felds have developed. As interac-
tive technologies become increasingly informed by and deployed in 
other felds’ settings (e.g., medicine, therapy, social science, sports), 
understanding “ability” through these models as whole-body, so-
cioeconomic, situational, and environmental phenomena becomes 
increasingly important. Thus, to further ability-based design, a 
deeper consideration of ability must be made, one that enables new 
approaches to conceptualizing, measuring, or modeling ability as 
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translatable across devices, interfaces, contexts, and activities, al-
lowing for “ability” to be usefully reifed by interactive computing 
systems. 

In this work, we move from implicit notions of ability to concrete 
notions of ability in order to solidify this construct for ability-based 
design. We focus on motor ability to demonstrate this move to 
concrete notions of ability—using metrics that characterize motor 
ability and relating these metrics, and “ability” more generally, to 
conceptual user models [74]. In so doing, we argue that for a system 
to robustly consider ability, it must: (1) consider metrics for ability 
within and beyond the feld of HCI; (2) consider inputs that arise 
from a variety of data-capture methodologies and sources; and (3) 
consider how metrics complement and attenuate each other. This 
work highlights the multifacted nature of motor ability, and ability 
more broadly, through the synthesis of multiple defnitions and 
metrics for these concepts across felds. 

2 RELATED WORK 
In this section, we review the research eforts that are similar to 
ours, namely that have attempted to clarify the notion of “ability” 
in some respect. As there have been relatively few such eforts and 
many of these eforts used constrained defnitions of ability, this 
section focuses only on salient examples; however, the rest of this 
paper is devoted to reviewing, organizing, and synthesizing how 
other prior work, especially in disparate felds, has shed light on 
“ability.” 

Nolte et al. [74] described how considering the intertwining 
nature of users, tasks, and contexts is imperative when designing a 
system using ability-based design. They described a modifcation of 
conceptual user modeling that emphasizes the union of task, user, 
and context. While Nolte et al.’s framing builds upon ability-based 
design, it ofers little information on how designers and researchers 
can defne or measure “ability” itself for each of task, user, and 
context [73]. We build on Nolte et al.’s work by examining how 
task, user, and context can be solidifed with a frmer notion of 
“ability” in hand. 

Other work that touched upon a conception of “ability” was 
Vanderheiden’s vision for a Global Public Inclusive Infrastructure 
(GPII). This project, formulated independently of ability-based de-
sign but consistent with its goals [124], proposed an infrastructure 
that could enable ability-based design [112–117]. Specifcally, the 
GPII aimed to facilitate researchers, clinicians, developers, families 
and others the ability to customize information and communication 
technologies to their personal needs, aligning with ability-based de-
sign’s goals of creating accessible technology by placing the burden 
of adaptation on the technology, not the user. The GPII’s authors 
outlined a specifc example implementation, the Library GPII Sys-
tem, which infuses the information and communication technology 
resources that libraries provide with the infrastructure enabled by 
the GPII, to create more inclusive libraries that facilitate access to 
information for everyone [113]. Recently, the team has created and 
tested an implementation of the GPII called Morphic, which eases 
access to a computer’s accessibility features through a large button 
strip as well as a system that saves users preferences for persis-
tence across devices [111]. However, Morphic relies upon users to 

specify their preferences for accessibility modifcations, rather than 
automatically adjusting to observed or reported abilities. 

Kondraske developed an early PC-based human performance 
measurement system [50, 51] that quantifed a user’s motor control, 
coordination, stability, and range of motion, among other things. 
While this system looked to comprehensively measure human per-
formance, it’s ability to translate its measurements on specifc com-

puter input tasks to a general notion of “ability” is limited. 
Similarly, Koester et al. created a PC-based ability assessment 

system called Compass [47]. Compass had four components, includ-
ing a client interface for ability assessment, a clinician interface 
for test confguration, a data visualization interface for viewing 
results, and a tele-rehabilitation interface for conducting remote 
assessments. Compass primarily covered keyboard, pointing de-
vice, and single-switch use. It was shown to be a valid and reliable 
means of assessing these computer input abilities [48, 49], but did 
not broaden beyond such abilities. 

Building of this tradition of PC-based test beds, Gajos et al. de-
vised the notion of an “ability-based user interface,” which could be 
automatically generated by their system, SUPPLE [24–26]. Gajos et 
al.’s test bed involved mouse clicking, pointing, movement, drag-
ging, and list selection. These behaviors were captured with regres-
sion models and used by a decision-theoretic interface generation 
algorithm that could minimize the “cost” of operating a user inter-
face, which was shown to be more successful for people with motor 
disabilities [27]. Along with a user’s motor abilities, SUPPLE could 
take into account a user’s preferences as well [24, 25]. 

Persad et al. described how to measure human capabilities to 
support inclusive design evaluations [80]. They provided guidelines 
for designers, describing sensory, cognitive, and motor capabili-
ties, and their respective lower-level categories. Specifcally, for 
motor control, they distinguished upper-limb capabilities and gross 
body-movement capabilities. This work was extended through a 
topological data analysis of these categories through 39 measures 
of ability [79]. This work also clustered individuals by varying ca-
pability types, thereby creating granular personas, but it ofered a 
rather limited view of “ability,” not considering any environmental, 
contextual, situational, social, or other factors. 

Reyes-Cruz et al. provided specifc competencies that blind or 
low vision individuals develop to carry out various tasks [84]. Their 
work supports the claim that disability is largely structural, high-
lighting the unique routines and preferences individuals with dis-
abilities must employ. They argue that these competencies should 
be considered “abilities” in any system that attempts to embrace 
ability-based design. 

Similarly, Johnson et al. examined “capability” and how to mea-

sure it for the purpose of providing a database for inclusive de-
sign [44]. They compared measurement types, ultimately outlining 
the need for measurements that encompass activities, tasks, product 
interactions, and component functions, which are measurements 
that are not centered around specifc activities. 

These prior eforts somewhat conceptualize or operationalize 
“ability” in limited, implied ways, ofering some guidance for how 
to incorporate measurements of ability in HCI. But none of them 
tackle “ability” head on. We follow Nolte et al.’s [74] integration 
of task, user, and context to develop a three-axis space in which 
measurements of ability can be placed. 
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3 TOWARDS CHARACTERIZING “ABILITY” 
“Ability” is a large and somewhat intractable concept. Therefore, in 
our eforts to carefully consider ability, we focus on motor ability, 
demonstrating that even a narrow aspect of ability can be exceed-
ingly rich and nuanced. We approach this task by surveying metrics 
that have diferent data sources (e.g., observational vs. self-reported) 
as well as diferent data types (e.g., qualitative vs. quantitative). By 
reviewing a large number of metrics that attempt to capture some 
aspect of motor ability, we show that expanding beyond metrics 
used in human-computer interaction (HCI) to characterize “ability” 
provides a rich view; indeed, these metrics can be utilized in HCI 
as well. 

We sourced classifcation schemes for “ability” from medicine, re-
habilitation engineering, physical and occupational therapy, biome-

chanics, sports science, ergonomics, and HCI. To extract a fair and 
representative picture of ability across these felds, we identifed 
relevant literature through multiple mechanisms: overall query 
searching, forwards and backwards snowballing, and feld-specifc 
query searching [127]. 

We utilized query searching of PubMed,
1 
the ACM DL,2 

and 
IEEE Xplore3 

to identify papers of interest. Our query had three 
categories, and within a category the "OR" condition was used, 
while between categories the "AND" condition was used. The frst 
category utilized common keywords to describe disability;4 

the 
second used keywords to describe classifcation schemes;

5 
the third 

used descriptors of motor abilities.6 
The search was over paper titles 

and metadata. These initial queries primarily identifed literature 
that utilized existing measures of ability within their own research, 
but also identifed literature that developed measures of ability. In 
the former case, the original source for the metric cited within the 
queried literature was accessed. 

Along with identifying literature, our search identifed how abil-
ities are measured in diferent felds. These results helped defne ad-
ditional feld-specifc queries. For example, rehabilitation medicine 
utilizes terms such as “upper arm rehabilitation measures” or “gross 
motor function measures.” From here, we employed multi-level 
snowballing and reverse snowballing [93] to identify seminal pa-
pers, specifc ability models, critical analyses of such models, and 
insights into how such models could be employed in ability-based 
design. We also identifed themes and metrics from the Shirley Ryan 
AbilityLab Rehabilitation Measures Database [1]. 

Our fnal identifed body of literature was separated into three 
areas that arose from themes we identifed in the literature: (1) 
measures characterizing body mechanics, (2) measures describing 
quality of life and activities of daily living, and (3) measures of 
technology profciency and use, which were largely from HCI. The 
literature from outside HCI, mostly in (1) and (2), was separated 
by how ability is viewed irrespective of feld, as there is consider-
able overlap between felds for many of the metrics in how they 
are employed. This separation also highlights the two ends of a 

1
https://pubmed.ncbi.nlm.nih.gov/

2
https://dl.acm.org/

3
https://ieeexplore.ieee.org/Xplore/home.jsp 

4
Keywords for disability: disability, impairment, ability. 

5
Keywords for classifcation: model, classifcation, system, assessment, scale, level. 

6
Keywords for motor abilities: motor control, motor, strength, ambulation, coordina-
tion, mobility, range of motion. 

spectrum along which many felds view the body’s ability. Fur-
ther, this separation also facilitates general translation to HCI, and 
helps to understand which measures could inform, or be adapted 
to, ability-based design. The following described measures are a 
representative sample of the measures identifed in the literature. 
These measures were chosen to represent the range and diversity 
that motor ability occupies, the types of measurements available, 
and the prominence and acceptability of use. 

3.1 Body Mechanics as “Ability” 
Characterizing body mechanics is a fundamental method of mea-

suring ability and is a common tool used to diagnose and track 
ability changes in felds such as medicine and rehabilitation [5]. 
Body mechanics can represent ability in multiple ways: directly 
as they are measured, indirectly as they are extrapolated to bodily 
function, or somewhere in between. In this subsection, we review 
the ways in which body mechanics can be used as measures of 
ability. 

Body mechanics can be classifed into descriptions of the posi-
tions of the body in static or dynamic conditions (kinematics), and 
the forces and moments that generate these positions (kinetics). 
Body position and movement are commonly measured through go-
niometers, motion capture, and inertial measurement units (IMUs). 
Body output forces and torques are measured through force plates, 
load cells, pressure sensors, and dynamometers. The generation of 
these forces and torques can be examined by proxy through tools 
that measure muscle activity, such as electromyography (EMG) [6]. 

The signals from these biomechanical sensors can be employed 
in computer systems to characterize motor control. For example, 
motion capture and other signals are employed in OpenSim and 
other musculoskeletal simulation tools to understand mechanisms 
of motor control [15, 97], or in the gait deviation index (GDI), an 
index of gait pathology for cerebral palsy [94]. One use of EMG 
is to calculate muscle synergies, or common motor modules of 
control [104], which can be used to calculate the dynamic motor 
control index during walking (Walk-DMC), a measurement that 
uses EMG to describe the variability of a user’s motor control while 
walking [103]. Indices such as the GDI or Walk-DMC can ofer 
clinicians and researchers tools to understand the biomechanical 
impact of a disability as a numerical value. 

These biomechanical signals can be used in two ways: (1) as 
measures of ability in assessments, or (2) as input to control com-

puter systems [53, 89]. In the former case, biomechanical signals 
and the tools used to collect them are often utilized as measures to 
determine if someone falls with a “normal” range from a medical 
perspective. For example, using a system that tracks joint angles 
to identify range of motion is not clinically meaningful without 
a normative reference range for joint mobility. Such normative 
comparisons are considered necessary in medicine for diagnosis. 
For ability-based design, diagnosis or a comparison to “normal” is 
not the goal; thus, there is an expanded opportunity to use these 
metrics as purely observational values, ones to which computing 
systems might respond. 

Clinicians often utilize physiological descriptors of how body 
mechanics might be altered or afected. These descriptors include 
topographic indicators, such as paraplegia or tetraplegia for cerebral 

https://3https://ieeexplore.ieee.org/Xplore/home.jsp
https://2https://dl.acm.org
https://1https://pubmed.ncbi.nlm.nih.gov
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palsy (CP), spinal cord injury (SCI), and stroke, among others [29, 
69, 78]. 

Many measures of ability describe information about body me-

chanics from a functional, non-task-specifc perspective. These mea-

sures include range of motion, dexterity, strength, coordination, 
balance, and sensory function. For example, hand-grip strength, 
measured as a maximum voluntary contraction, is a common met-

ric for monitoring sarcopenia [65, 68, 86, 99]. The International 
Standards for Neurological Classifcation of Spinal Cord Injury (IS-
NCSCI) by the American Spinal Cord Injury Association (ASIA) 
classifes SCI by the level of retained motor and sensory function af-
ter injury [87]. These levels are determined by examining sensation 
and muscle function within specifc dermatomes and myotomes,

7 

respectively. This information is used for the ASIA impairment 
scale (AIS) [69], a fve-point letter-grade scale based on the Frankel 
classifcation of spinal cord injury [22]. 

Another assessment of body mechanics is the Fugl-Meyer as-
sessment, a standard measurement tool to monitor stroke recovery 
as well as multiple sclerosis or traumatic brain injury [82]. It is a 
226-point scale, with its items separated into fve areas: (1) motor 
function, separated by upper and lower extremities, (2) sensory 
function, (3) balance, (4) joint range of motion, and (5) joint pain. 
Each item on the assessment is graded on a 3-point ordinal scale 
where 0 = “cannot perform,” 1 = “performs partially,” and 2 = “per-
forms fully” [23, 29]. Such metrics that describe functional, non-
task-specifc ability, could be leveraged in ability-based design as 
generalizable metrics that translate across multiple activities. 

Paralympic classifcation provides a substantial set of guidelines 
for functional classifcation of a body’s abilities, as the aim is to 
minimize the disability’s efect on the competition’s fairness for the 
athletes [13]. Disability is separated into 10 types: muscle strength, 
range of movement, hypertonia, ataxia, athetosis, short stature, am-

putation, leg length diference, vision impairment, and intellectual 
impairment. Athlete assessments have evolved over time to use 
qualitative descriptions and quantitative ratio-based scales, and 
moving away from ordinal scales and ratings [107–109]. 

Other measures of ability in body mechanics include task-specifc 
measures that are designed to be proxies of functional body me-

chanics. For example, the Box and Blocks test [66] and Nine Hole 
Peg Test [46, 67] capture hand and fnger dexterity, respectively, 
through manual manipulation tasks. Similarly, the Action Research 
Arm Test (ARAT) describes grasp, grip, pinch, and gross move-

ment [54, 131]. 
Furthermore, other metrics blend measures of body mechanics 

with bodily function during activities of daily living. For example, 
the Movement Disorder Society’s Unifed Parkinson’s Disease Rat-
ing Scale (MDS-UPDRS) has four sections: non-motor aspects of 
experiences of daily living, motor aspects of experiences of daily 
living, a motor examination, and motor complications [33]. Further 
metrics that rely on activities of daily living alone are described in 
the next section. 

In medicine, measures are commonly taken periodically to diag-
nose and assess changes in a person’s body mechanics and function. 
Given the various ways that body mechanics can be measured, from 

7
A dermatome is an area of the skin innervated by a segment of the spinal cord; a 
myotome is a group of muscles that are innervated by a segment of the spinal cord 
[69]. 

body-worn sensors to clinical assessments, and from a fne-to-gross 
motor control, these measures lend themselves well to assessing 
motor ability by observing a range of biomechanical activities. 

Holistically, the biomechanical view of ability could be consid-
ered “how a body functions.” This locates ability directly in the 
body, and is less emphasizing of outcomes than ability-based de-
sign, which in its ability principle is focused on ensuring systems 
respond in some efective way to a user’s abilities. Whereas this 
principle is system-focused, the biomechanical view of ability is 
more person-focused. It is not so much about a person performing 
to bring about a result in the world, but about a person’s functioning 
as a property of the body itself. The implications for ability-based de-
sign are that, under the biomechanical view, ability is to be codifed 
as functional capacity, almost independent of what that capacity 
can produce in the world. This may seem counterintuitive to the 
goals of ability-based design, in that ability-based systems are those 
that are meant to uphold what a user can do. However, systems 
that disregard the body’s base functioning capacity ignore informa-

tion about ability that is task-agnostic and therefore generalizable. 
Furthermore, this view of ability helps to emphasize that what a 
body can do need not always be performance based, but can also 
be about how the body comfortably exists in the world. 

3.2 Daily Activities and Quality of Life as 
“Ability” 

Instead of directly measuring motor function, another approach is 
to measure a person’s ability to do activities of daily living and any 
symptoms or limitations present during such activities. These mea-

sures can either be through patient-reported outcomes or clinician 
observation. For example, the gross motor function classifcation 
system (GMFCS) and manual ability classifcation system (MACS) 
are both systems that describe gross—meaning overall—motor func-
tion for children with cerebral palsy [81]. These two motor ability 
measures are both fve-level ordinal scales determined by clini-
cian observation. The frst scale, GMFCS, describes self-initiated 
gross motor function during and between everyday activities such 
as walking, standing, sitting, and any concurrent reliance on as-
sistive devices for children aged 6–12 [76, 81, 129]. Palisano et al. 
[77] expanded and revised the GMFCS (as the GMFCS-E&R) to 
support kids aged 12–18 to better refect the International Clas-
sifcation of Functioning, Disability and Health [75], and refect 
both the patient’s capability and performance and the infuence of 
environmental factors. The second scale, MACS, is an upper-limb 
complement to the GMFCS that describes activities of daily living 
such as playing or dressing [17, 81]. 

Although the GMFCS and MACS are specifc to cerebral palsy, 
there are also examples of tests that are agnostic to diagnosis. 
For example, the disability of the arm, shoulder and hand (DASH) 
questionnaire was specifcally designed to be able to relate upper-
extremity conditions by burden [35, 36]. The DASH is a 30 item 
questionnaire where each question is graded on a 5- or 7-point Lik-
ert scale. It includes questions that ask about a person’s symptoms 
(pain, weakness, stifness, tingling, numbness) as well as functional 
status (physical, social, and psychological) [36]. A shortened ver-
sion of the DASH questionnaire, called QuickDASH, which contains 
11 of the items of the original DASH, has also been developed [9]. 
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Instead of relying on patient reported outcomes or clinician 
observations, some ability assessments measure performance out-
comes of activities of daily living. For example, the Jebsen-Taylor 
Hand Function Test times patients as they perform a variety of 
tasks [85]; however, the test has been shown to have poor correla-
tion with patient-reported outcomes [14], calling its validity into 
question. 

In contrast to the biomechanical view of ability, measures and 
metrics from activities of daily living (ADL) and quality of life (QoL) 
orient ability as an interplay between the body and the outside 
world. The biomechanical view of ability is isolationist; ability ex-
ists unchanged regardless of context or the world around it because 
it is located entirely in the body. By contrast, when ability is viewed 
through an ADL and QoL lens, it is drawn out of the body and lo-
cated as an interplay of the body and the world. This blending aligns 
closer to the view of ability in ability-based design, especially with 
its treatment of so-called “situational impairments” [95, 121]. Fur-
thermore, many metrics from ADL and QoL represent a subjective, 
frst-person experience of ability. Indeed, many current examples 
of ability-based design take a performance-based view of ability 
(e.g., [84]), but ADL and QoL measures can help us to consider why 
performance may be altered and what efect on someone’s life it 
has. An ability-based system that integrates such measures could 
use this knowledge to better support their user in accomplishing 
everyday tasks. 

3.3 Human-Computer Input Performance as 
“Ability” 

The feld of human-computer interaction (HCI) has developed many 
measures to quantify how people interact with user interfaces, 
whether digital or physical. These measures are often task-specifc. 
For example, many measures focus on information transmission 
via pointing, including target selection speed, target selection accu-
racy, and Fitts’ law throughput [56, 58, 102, 132]. Text entry is also 
a canonical form of information transmission to computers, and 
metrics such as text entry speed [57], accuracy [100], and through-
put [135] quantify input performance. Numerous additional metrics 
have been developed for text entry as well [3, 60, 101, 119, 134]. 
Similar notions of input efciency have even been developed for 
brain-computer interfaces [128]. 

Fitts’ law [21] was frst used as a model in HCI [12] to relate the 
time required to select a target to target size and movement distance 
in aimed pointing tasks. Diferent approaches have been taken to 
building Fitts’ law models, with details varying as to how experi-
mental procedures are run, how pointing tasks are confgured, and 
how regression coefcients are established [10, 39, 61, 70, 71, 102, 
106, 126, 132, 133]. Further, of key importance is Fitts’ throughput 
metric [58], a form of information transfer rate (ITR), which unifes 
speed and accuracy as a measure of efciency. (Similar constructs 
have been developed recently for text entry [135].) This view pri-
marily holds that people’s abilities are measured by input efciency. 
Although these measures were not necessarily created as explicit 
measures of ability, they are often used as such in HCI (e.g., [25]). 
Ability-based design itself had an early focus on pointing device 
performance for people with motor impairments [120]. 

Beyond quantifying efciency in aimed pointing movements, 
other metrics in HCI provide descriptive statistics for how a user 
moves through space when selecting a target. Mackenzie et al. [59] 
established additional accuracy measures for mouse movement 
when selecting a target. These measures include movement variabil-
ity, target re-entry, task axis crossing, movement direction change, 
orthogonal direction change, movement error, and movement ofset. 
Keates et al. [45] extended these metrics for users with motor impair-

ments, which were further built upon by Hawang et al. [38]. While 
the original intent of these metrics was to describe the dynamics 
behind overall pointing speed, accuracy, and efciency [38, 45, 59], 
utilization of these movement metrics to inform system design 
has been shown to be benefcial for individuals with disabilities 
[122, 123]. This work presents a promising avenue for these metrics 
to represent ability in ability-based design. 

Unsurprisingly, given the history of HCI, many of these metrics 
describe interaction with a pointing device and cannot always be 
applied to alternative input devices. For example, touch interactions 
unfold over time and space, and multiple touches can occur con-
currently. Kong et al. [52] developed new metrics to quantify the 
time-varying behavior of touches given their non-instantaneous 
action and 2-D footprint. These metrics were inspired by those from 
MacKenzie et al. concerning mouse movement [59]. 

More recently, with the advent of ubiquitous computing, HCI has 
utilized sensors originally from biomechanics and health sensing 
to measure ability or accommodate situational impairments [121]. 
For example, accounting for perturbations in touchscreen typing 
while walking using accelerometers has shown to increase typing 
accuracy [30]. A similar correction was employed to measure and ac-
count for the efect of hand position while touchscreen typing [31]. 
Mariakakis et al. [63] detected inebriation using a combination of a 
phone’s built-in sensors and a small battery of human performance 
tasks on a touch screen that took about four minutes to perform. 

These advances in ubiquitous computing have allowed for the 
monitoring and diagnosis of abilities. For example, motor manifes-

tations of Parkinson’s disease (PD) were detected while typing on 
a touch screen [4] and on a keyboard [28]. These and other studies 
were described in an extensive review of remote assessments of 
hand function [34], which covered people with PD, stroke, multiple 
sclerosis (MS), spinal cord injury, and amyotrophic lateral sclerosis 
(ALS). 

Individual eforts at employing ability-based design ofer difer-
ing perspectives on how to characterize “ability.” Sarcar et al. [91] 
used models of tremor, dyslexia, and memory dysfunction for text 
entry performance on touchscreen devices to optimize keyboard 
key-size and the number of word predictions ofered. Another ap-
proach to keyboard optimization utilized user-specifc models of 
ability that incorporated how a user’s abilities might difer when 
moving in diferent directions to optimize keyboard layout [70, 71]. 
As noted, SUPPLE automatically generated user interfaces by rep-
resenting a user’s pointing abilities as regression models that pa-
rameterized a decision-theoretic optimization process [25–27]. 

Alongside specifc implementations of ability-based design, other 
implementations of user-specifc modeling ofer insight on how 
to measure and adapt to ability. For example, Findlater and Wob-

brock [20] modeled a user’s keypresses to adapt the underlying 
classifcation model for a touchscreen keyboard. Hurst et al. [37] 
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detected users with and without pointing problems and predicted 
whether preventing accidental clicks and slips [105] would improve 
pointing issues. 

Other systems take approaches that are about minimizing human 
error. For example, models of intelligence [40, 43] and psychomotor 
ability [42] have been used to optimize how a machine provides 
error correction and automation. These models were developed by 
assessing the motor control and ability to navigate a wheelchair by 
study participants. 

Assessing a person’s ability to interact with technology is also 
necessary to help prescribe interventions and assign assistive de-
vices. As noted above, Koester et al. [47] built Compass, a software-
based assessment tool for clinicians to measure desktop computer 
skills in order to select appropriate assitive interventions. On a 
smartphone, the SmartAbility app [118] maps abilities to specifc 
assistive technologies based on user performance in a variety of 
tasks. 

A highly apparent theme running throughout these metrics is 
how performance-oriented they are. Speed, accuracy, and efciency 
are of primary importance where input devices and techniques are 
concerned. Indeed, this is not surprising for understanding “ability” 
in HCI, as pointing, text entry, and touch are pervasive and repeti-
tive tasks. But such a view greatly limits a more holistic account of 
ability, even motor ability. People’s abilities, even concerning com-

puter use, extend well beyond their psychomotor task performance 
with input devices. Although ability-based design has been mostly 
applied in computing contexts (with some exceptions, e.g., [110]), 
it would beneft greatly from wider treatments of ability than just 
users’ psychomotor behaviors. For example, cognitive, learning, 
and social abilities are highly relevant to computer use today. 

Our extensive literature review has revealed that “ability” has 
primarily been characterized by biomechanical functioning, activi-
ties of daily living (ADL) and quality of life (QoL) issues, or human 
performance with computer input devices. Each of these views 
does indeed capture something about ability, but as to their use in 
ability-based design, the frst and third tend to be overly narrow, 
while the second is overly broad and specifc to everyday tasks. 
Something else is needed. We turn to this challenge in the next 
section. 

4 DISTILLING “ABILITY” FOR ABILITY-BASED 
DESIGN 

To organize the many metrics and measures presented above, we 
ofer a framework for characterizing “ability.” This framework es-
tablishes a robust concept of ability that represents its multiple 
facets, not just any one view encountered thus far. Indeed, this 
framework does not redefne any individual defnitions of ability, 
but rather coalesces and synthesizes them. This framework is built 
of of conceptual user models that relate the user, context, and task 
[74]. Further, this framework is capable of representing multiple 
models of disability (e.g., social, medical). 

Our ability framework is built of three axes: the user axis, task 
axis, and context axis. The user axis represents who is observing 
the metric, the context axis refects the user’s environment, and the 
task axis refects the user’s current situation. Each axis is defned 
by endpoints that refect the span of the axis; the user axis extends 

from self-reported metrics to observed-by-others, the context axis 
spans metrics that represent internal to external context, and the 
task axis extends from task-agnostic to task-specifc metrics. With 
this framework, any metric of ability can be placed inside the space 
created by these axes (Figure 1). Further, to represent “ability” in 
ability-based design, an interactive system should embody multiple 
points within this space, even aiming to occupy the extents of the 
three axes by employing multiple metrics. 

These axes are grounded in work that relates user, context, and 
task [74], while also refecting arguments that have been made to 
support multiple models of disability in HCI. Mankof et al. [62] dis-
cusses faws in models of disability, arguing that despite these faws, 
these models still have their benefts, as long as they are working 
in concert with each other. The framework we have built to repre-
sent ability parallels this point, intertwining social, environmental, 
health, and other factors that compose ability and disability. 

In addition, when utilizing this three-axis system, in order to 
reduce the burden on the user, one should aim to minimize the 
number of tasks the user must complete. In addition, when alter-
native metrics are available, one should limit the use of disease-
and diagnosis-specifc measures to limit the storage of personally 
identifable information. 

4.1 User Axis: Metrics that Refect Diferent 
Points of View of the User 

The user axis refects the who is observing the user and spans 
from “1st person” to “3rd person.” The frst-person metrics are 
self-reported measures, while third-person metrics are observed 
by a third-party, whether that be a clinician, researcher, computer 
system, or other outside observer. Metrics that are composed of 
frst-person and third-person data types fall between the two end-
points of the axis. Biomechanical measures, HCI input metrics, and 
wearable health data are some of the fundamental measures of 
ability that can exist along this axis. Among biomechanical mea-

sures, measures like the Fugl-Meyer assessment [23], which gives 
a complex understanding of both motor and sensory function, as 
well as range-of-motion and pain, would ft in the middle of the 
axis, as it is composed of both self-reported information and clin-
ician observations. Instances of biomechanical metrics that fall 
towards the third-person end of the axis include wearable health 
data, obtained both in single instances and by continuous tracking. 
Additional consumer-facing signals could be heart rate and inertial 
sensing, signals common to most consumer smartwatches. Less 
common in consumer electronics, but under active investigation 
in HCI, are electromyography (EMG) measurements [16]. Quality 
of life metrics such as the disability of the arm, shoulder and hand 
(DASH) questionnaire [35, 36] and QuickDASH [9], populate the 
frst-person end of the user axis, as they are refections by the user. 

Existing work in HCI that includes personalization, including im-

plementations of ability-based design, provide thoughtful examples 
on how to marry personalized interaction with HCI metrics to cre-
ate decontextualized measures that could exist along the user axis. 
For example, Mitchell et al. [70, 71] implemented an orientation-
specifc Fitts’ law for each user in the design of their personalized 
keyboards. Similarly, Trudeau et al. [106] utilized Fitts’ law to fur-
ther examine diferences in performance depending on orientation 
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Figure 1: Ability Axes as a three-axis space: the user axis, the 
context axis, and the task axis. The user axis extends from 
“1st person” to “3rd person,” the context axis from “internal” 
to “external” contexts, and the task axis from “task-agnostic” 
to “task-specifc.” These axes are arranged to form a three 
dimensional axes space that represents ability. 

of the thumb when using a mobile phone. Taking into account 
the impact of movement orientation beyond just keyboards could 
help to build interfaces that are better suited to a user’s abilities. 
Findlater et al.’s [20] personalized models for 10-fnger touchscreen 
keyboard typing also shows how individualized input models could 
be leveraged in ability-based design. These examples highlight just 
a small portion represented by HCI input metrics to capture ability. 

4.2 Context Axis: Context-Dependent Measures 
of Ability 

The context axis captures ability measures refecting the environ-
ment the the user is operating in. These environmental factors are 
both external and internal to the user [124]. Of the metric types 
that could fall along this axis, wearable health data and ubiquitous 

sensing data are especially pertinent, as well as quality of life mea-

surements. This axis is organized on one end by measures that 
capture factors external to the user, while the other end is occupied 
by factors internal to the user. 

Measuring external factors that are environmentally context-
dependent helps to account for scenarios such as situationally in-
duced impairments and disabilities (SIIDs) [95, 96, 121] as well 
as other disabling scenarios. For example, when walking, a user 
might have more errors due to movement or looking around at their 
surroundings that could be measured and corrected for [30, 72]. 
Alternatively, a device could sense when a user switches from using 
the device with two hands to one, perhaps due to needing to carry 
other objects at the same time [32]. 

Considering changes in ability that are internal to the user is 
also for the context axis. For many individuals with disabilities and 
chronic illness, there is signifcant fuctuation in ability or pain on 
a daily basis or even within a single day; being able to measure that 
is important [55, 130]. Accounting for these changes could be done 
specifcally through wearable health data and feedback from the 
user. Although this end of the axis is user-centered, we chose to 
separate this from the user axis given the importance of considering 
the user’s abilities not just on average, but in context. 

4.3 Task Axis: Task-Dependent Measures of 
Ability 

The last axis we consider for constructing our ability framework is 
the task axis. This axis is built to bring together the behaviors a user 
has during specifc tasks when interacting with technologies and 
the many existing metrics that already describe these tasks. The 
two extremes of this axis are task-agnostic and task-specifc. When 
considering where a metric might fall on this axis, it is important 
to consider whether it explains a user’s ability to do a specifc task 
or not. If the metric addresses a specifc task, such as text input 
or an activity of daily living (ADL), it is task-specifc. If a metric 
generalizes across tasks, it is still task oriented, but it would fall 
towards the middle of the axis. If a metric does not describe ability 
as an outcome or output, it is task-agnostic. While the importance 
of task-specifc metrics is self-evident, also having task-agnostic 
metrics compensates for instances when task-specifc metrics are 
not available and additionally provides a view of the user that is 
not only task- or outcome-oriented. For example, in the case of text 
input, only including text entry metrics for an application would fail 
to address how one might need to navigate between that experience 
and something else, whether an app or website. 

Qualitative measures that refect quality of life, as well as quan-
titative HCI input metrics that are not task-specifc such as touch 
metrics [52], would fall on the task-agnostic end of this axis. The 
task-specifc end of the spectrum would largely be occupied by HCI 
metrics such as text entry measures, as well as metrics that describe 
ADL. Metrics such as throughput and information transfer rate 
(ITR) would fall in the middle of the axis. This placement on the 
axis is because these metrics both have the ability to be task-specifc 
as well as task-agnostic. ITR and throughput are specifc to target 
selection tasks, but also can be generalized for tasks such as text 
entry. 
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Alone, these axes each provide unique ways in which ability 
can be represented. However, the true beneft of these axes lays 
in relating them to each other and representing ability as a multi-

faceted concept. For example, to represent a user’s ability with 
HCI text entry metrics, it is not just representing their ability as 
task-specifc on the task axis, but also representing their ability as 
observable by a third-party on the user axis. The ability to generate 
text is also highly dependent upon the user’s context; for example, 
the user could be walking at the same time they are generating 
text. Using only one metric that represents one point in the space 
of these axes fails to account for the complex nature of ability that 
is necessary for systems that implement ability-based design. 

5 CONSIDERING PERSONAS FOR 
ABILITY-BASED DESIGN 

To demonstrate the utility of our three-axis ability framework, we 
ofer example personas as plausible fctions, which demonstrate 
how ability measures can be chosen to thoroughly occupy those 
axes (Figure 2). These personas show individual possibilities of the 
axes, and are not meant to represent the full extent and diversity 
of motor ability, but rather be illustrative of the utility of the axes. 
Additionally, the utilization of personas can be a helpful exercise for 
the implementation of ability-based design to successfully combine 
and consider users, contexts, and tasks. It is important to note that 
we use personas here to illustrate positions in our 3-D space, not as 
user caricatures that codify stereotypes or reinforce dominant pre-
conceptions, for which personas as design instruments have been 
reasonably criticized [64]. To reinforce this caveat, we deliberately 
do not give our personas human names. Rather, think of them as 
points in our “ability space.” 

5.1 Persona Requiring Alternative Access 
This persona requires alternative input access to use their tablet, 
alternating between access methods of switch-scanning and eye-
tracking. They must alternate between these methods due to envi-
ronmental conditions that do not permit eye-tracking or because of 
fatigue from eye-tracking. The most common task this persona uses 
their tablet for is composing text, whether emails, text messages, 
or documents. 

To consider relevant measures of ability for this persona, we con-
sider the axes of our framework both independently and together. 
Given that many tasks this persona performs are related to text 
entry, we would add a large number of text entry metrics to the task 
axis. These metrics are all fairly low-cost, both computationally 
and in terms of the efort needed to integrate them into a computer 
system. For the context axis, we could consider internal context, 
specifcally fatigue, as this persona fatigues from use of the eye-
tracker. While user fatigue could potentially be measured directly 
by observing how movement patterns of their eyes change, we also 
could use task-specifc metrics to observe fatigue. Finally, for the 
user axis, we could look at metrics that could quantify the user’s 
motor abilities such as their dexterity and spasticity. These motor 
abilities are considered so that during use of their switch scanner, 
the system can understand how often accidental selections occur. 

We can also go beyond this persona’s use case to consider more 
individuals that use alternative inputs to access their technology 

and how their tasks and contexts difer. Beyond utilizing text entry 
metrics, we could look at more general HCI metrics such as target 
selection speed, target selection accuracy, Fitts’ law throughput 
[56, 58], and information transfer rate [128]. These metrics ft a 
variety of both tasks and contexts. We can also consider a user that 
only sometimes uses alternative access, for example, someone that 
alternates between using a tablet with touch and switch-scanning. 
In this case, we can use touchscreen metrics [52] to monitor fatigue 
during touch prior to the user changing to switch-scanning. 

5.2 Persona with Limited Fine Motor Control 
This persona has Parkinson’s disease, resulting in limited fne motor 
control. Her primary interactions with technology are for commu-

nication purposes; she frequently calls, video-chats, and texts her 
family and friends. She will often receive pictures and videos that 
she likes to save for future reference. However, this persona has 
difculty navigating these tasks at times due to her tremor. It is 
time-consuming for her to compose a text message, and sometimes 
she will give up and call instead, even if it is inconvenient. Some-

times she will also decline a call that she meant to accept due to 
her tremor. She has found adaptations by using a voice assistant, 
but she is not entirely happy with this solution. 

How might we go about characterizing the abilities of this per-
sona using our framework? Similar to the frst persona, we can 
consider a large number of text entry metrics for the task axis 
[3, 100]. In addition, we can add general non-task-specifc metrics, 
such as touch metrics [52]. Given that this persona has Parkinson’s 
disease, we can consider metrics for the user axis, such as Move-

ment Disorder Society’s Unifed Parkinson’s Disease Rating Scale 
(MDS-UPDRS), which contains components along the user axis, 
given it’s refection of both quality of life and motor movements. 
Considering the context axis, we look at both external and internal 
factors for this persona. Individuals with Parkinson’s disease often 
have daily fuctuations in ability, especially as medication wears 
of [83]. Furthermore, the motor manifestations of Parkinson’s dis-
ease might not be symmetric [88], and so her ability to do tasks 
could vary signifcantly by which hand she was using to hold the 
phone and use it. These symptoms are why it would be important 
to consider onboard sensing to determine her grip pattern. 

Expanding this persona to additional devices, one could consider 
factors for the context axis, such as device-specifc measurements. 
For this persona, such device-specifc measurements would trans-
late to input-specifc measurements, for example, in the case of a 
desktop computer controlled by a mouse, measuring jitter. Expand-
ing to other diagnoses beyond Parkinson’s, including the case in 
which there is no diagnosis, one could add metrics to the user axis 
such as disability of the arm, shoulder and hand (DASH) [35, 36] or 
the shortened version, the QuickDASH [9]. 

5.3 Persona Experiencing a Movement-Induced 
Situational Impairment 

This persona works at home two days a week and the other days 
works in an ofce. When she works in her ofce, she commutes by 
bus and on foot. During her bus commute, she often reads books she 
has downloaded onto her phone. Sometimes while on the bus she 
answers emails, especially if she is running late. Only occasionally 
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Figure 2: Example personas demonstrating how metrics to describe ability occupy the extents of the ability axes. 

will she answer emails while she is walking to or from the bus. On 
days that she is working from home, she often will take phone calls 
while she is on a walk. During this time, she will sometimes have 
to look at her phone to reference an email or her calendar. 

To start constructing metrics around this persona, we frst con-
sider the context axis, given that she is using her phone under 
multiple diferent environmental conditions that will all infuence 
her ability to operate the phone accurately. The phone’s onboard 
sensors can measure acceleration and rotation whether due to the 
movement of the bus, or the user’s movement while she is walking 
or handling the phone. If she is wearing a smartwatch, its onboard 
inertial sensors can further be utilized to anchor the phone’s move-

ment and diferentiate between her moving the phone and the 
environment moving the phone. These measurements for the con-
text axis play into the task axis, as having highly precise movements 
matter more when the user is composing an email as opposed to 
when she is reading. 

For the tasks she does, we would consider text entry metrics 
[3, 119]. We additionally consider more general metrics that refect 
the user’s ability to operate her phone, specifcally touch metrics 
[52]. In the case of a user such as this persona, we would rely less 
on the user axis, especially as she would have fewer, if any, clinical 
metrics relevant to her. 

Expanding beyond this persona to a more general persona under 
a movement-induced situational impairment, we could utilize clini-
cal metrics that fall along the user axis, especially those relevant 
to the efects of motion. For example, these metrics could refect 
a person’s proneness to fatigue as they walk or those who have 
limited fne motor control, as individuals with limited fne motor 
control would have even more difculty composing emails on a bus 
with extraneous motion. 

6 DISCUSSION 
Our literature review uncovered three general ways that “motor 
ability” has been characterized: by one’s biomechanical function, 
by activities of daily living (ADL) or quality of life (QoL) issues, and 
by use of input devices in human-computer interaction (HCI). All 
three of these characterizations were limited in signifcant ways, 
but taken together, they informed a rich perspective on ability. 

Leveraging the above notions of ability, our three-axis ability 
framework for ability-based design consisted of the user, the con-
text, and the task, enabling us to consider numerous metrics for 
characterizing “ability” for our personas. We organized this axis 
space to refect current work in ability-based design [124] as well 
as conceptual user modeling [74]. These axes are also designed to 
be set together as a three-dimensional space to indicate that these 
considerations cannot be fully separated when modeling ability. We 
include Table 1, which details each metric we reviewed, explaining 
where in the three-axis space it sits. 

The extents of each axis were chosen to represent a range of 
abilities. For the user axis, choosing both qualitative and quanti-
tative measures of ability allows for both unbiased measurements 
as well as the user’s perspective on their abilities. To this latter 
point, we stress that any system that uses ability-based design must 
refect a user’s abilities as the user sees them, not just as they are 
computationally assessed. For the context axis, we chose the extents 
to be internal and external. This choice was in view of literature 
that argues for the importance of designing to account for natural 
variations and fuctuations in abilities (internal contexts) [55, 124] 
as well the social model of disability (external contexts) [98]. Finally 
for the task axis, we chose extents that allowed the axis to refect 
the wide variety of metrics that are available for use. Many of these 
are not task-specifc or directly translate to activities involved with 



ASSETS ’24, October 27–30, 2024, St. John’s, NL, Canada Mitchell and Wobbrock 

Table 1: Measures of Motor Ability and their Categorization 

Axis Location 
Measure Assessment Method References 

User Task Context 

Computer Systems 3rd Person Midpoint Midpoint [5, 6, 15, 53, 89, 94,
Body Mechanics 

97, 103, 104] 
Clinician Observation 3rd Person Midpoint Midpoint [29, 69, 78] 
Computer Systems 3rd Person Midpoint Midpoint [46, 65–68, 86, 99]

Functional Body Mechanics 
Clinician Observation 3rd Person Midpoint Midpoint [22, 23, 29, 69, 82, 

87] 
ADL Clinician Observation 3rd Person Task-specifc Midpoint [14, 17, 76, 77, 81, 

81, 81, 85, 129] 
QoL Self-reported 1st Person Midpoint Midpoint [9, 35, 36] 

Information Transmission 3rd Person Midpoint Midpoint [56, 58, 58, 102,
Target Selection 

132] 
Movement Patterns 3rd Person Midpoint Midpoint [38, 45, 59] 

Text Entry Efciency 3rd Person Task-specifc Midpoint [3, 100, 119, 135] 
Touch Movement Patterns 3rd Person Task-agnostic Midpoint [52] 
Situational Impairments Movement Patterns 3rd Person Midpoint External [30, 31, 121] 
Disease Monitoring Movement Patterns 3rd Person Midpoint Internal [4, 28, 34] 

technology, yet they refect vital perspectives such as the user’s 
perceptions of their abilities. 

These axes refect the interplay of diferent models of disability 
stressed by other researchers in HCI. Mankof et al. [62] and Mack 
et al. [55] both emphasized the balance between medical and social 
models and how each can describe diferent aspects of ability and 
disability. The design of our axes also opens up the possibility to 
use various metrics from a new perspective. For example, while 
many of the metrics we described were clinical, such metrics could 
be employed under contextual factors to describe natural internal 
fuctuations or external environmental factors as well. 

With these axes in view, practitioners of ability-based design 
should be able to maximize coverage over the axis space to create 
systems that are robust to users’ abilities, both objective and sub-
jective, translatable, yet specifc across devices, contextualized to 
the task at hand, and robust to external environmental conditions 
and changes in a user’s abilities. 

Although we specifcally address metrics that measure motor 
abilities for the scope of this paper, there are other measures of abil-
ity that infuence motor ability, yet are not direct measures of motor 
ability itself. For instance, the ability to access medication that im-

proves tremor from Parkinson’s disease is a contextual measure 
of ability. We therefore must also consider larger environmental, 
contextual, and social metrics when considering motor ability to 
avoid creating systems that are not representative of users. 

Furthermore, our framework’s axes represent how ability can 
best be represented in an interactive system. Ability is, in reality, 
an incredibly complex concept, one for which individual metrics do 
not—and never can—fully encapsulate the lived experiences of the 
individual they are characterizing. But the more our computing sys-
tems can accurately understand our abilities, the more responsive 
they can be to accommodating them. 

6.1 Limitations 
A limitation of this work is that it only considered users’ motor 
abilities. We incurred this limitation when building our framework 
for ability-based design given the myriad metrics that represent 
motor abilities. Our belief is that given the wide variety of metrics 
that this infrastructure supports, the framework would be translat-
able to other types of abilities. Additionally, these axes could help 
support the identifcation of new metrics to fll out the axis space 
for these other ability types (e.g., cognitive, sensory). 

This work stops short of actually implementing an interactive 
ability-based system using our ability framework. Rather, we chose 
to focus on our extensive literature review and synthesis to em-

phasize that HCI can integrate metrics from other felds for ability-
based design. Our three axes are also generally supported in litera-
ture as ways to model users [74], and so there is a strong foundation 
for structuring these axes as we did. 

Finally, this work focuses on the measurement of ability to aid 
the implementation of ability-based design. We recognize that this 
aspect is only one facet of the implementation of ability-based 
design; design process is another, unaddressed here. Furthermore, 
measuring ability, especially using clinical tools, leans towards the 
medical model of disability; we juxtapose that with the context axis 
that discusses metrics from the social model of disability [62, 98]. 

7 FUTURE WORK 
This work outlined a framework for characterizing “ability” for 
ability-based design, but did not exercise the framework in an 
end-to-end design process through implementing an actual ability-
based system. We leave such an endeavor for future work. Doing so 
would enable us to consider the framework and its many metrics for 
possible inclusion in a working system, and to assess the “coverage” 
of the three-dimensional space of the framework by the metrics 
under consideration. 
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While this work highlighted the move from implicit notions of 
ability to concrete notions of ability for motor ability, we envision 
that the framework we developed will extend to disabilities beyond 
motor disabilities. We hope future work explores this transition for 
other disabilities and furthermore, implements systems using this 
framework for other disabilities. 

The integration of clinical metrics into ability-based systems 
raises privacy concerns that are not present in systems that rely 
solely on traditional HCI metrics to capture ability. Systems that 
use these metrics will need to adopt security practices that en-
sure proper storage and access of this information and additionally 
ensure the user feels at ease with volunteering such information. 
Furthermore, future work could investigate the correlation between 
measures of ability outside of HCI to measures from within HCI so 
that these HCI measures could act as proxy measurements. Finding 
correlations could enable a system designer to reduce any reliance 
on clinical metrics that have patient-sensitive information. More-

over, HCI-specifc metrics showing high correlations with clinical 
measures would allow for more metrics to be accessible to those 
that have difculty obtaining a clinical assessment [47, 48]. 

8 CONCLUSION 
Current implementations of ability-based systems ofer unspoken or 
piecemeal approaches to defning and measuring ability, the central 
concept in ability-based design [124, 125]. To erect a unifed frame-

work for characterizing “ability,” we reviewed measures of motor 
ability from the felds of rehabilitation, occupational and physical 
therapy, medicine, biomechanics, HCI, and more. We described the 
approaches these metrics take to measuring ability and organized 
these metrics into a three-axis framework for ability-based design. 
These axes are the user (from 1st person to 3rd person), context 
(from the user’s internal context to the environment’s external con-
text), and fnally, the task (from task-agnostic to task-specifc). We 
also provided example personas that utilize metrics that occupy 
this three-axis space to demonstrate the utility of the axes. It is our 
hope that by characterizing “ability,” the creation of ability-based 
systems can be more informed, inclusive, and successful. 
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