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Abstract

Ability-based design (Wobbrock et al. 2011, 2018) offers conceptual
guidance for its use in designing accessible systems, but the con-
struct of “ability” itself—a crucial notion for ability-based design—is
surprisingly elusive and absent from extant accounts. Different
disciplines offer disparate notions regarding definitions and mea-
sures of “ability,” but ability-based design has yet to avail itself of
these notions in its operationalization. To address this gap, this
work reviews literature that quantifies motor abilities, provides
guidance to distill metrics for human-computer interaction, and
conceptualizes how motor ability should be quantified for ability-
based design. We offer a three-dimensional framework composed
of the user, context, and task, and we locate various metrics for
ability to be used when implementing ability-based designs. We
support this new conceptualization with example personas that
occupy this three-dimensional space. This work can inform those
using ability-based design to create systems that are responsive to
users’ abilities.

CCS Concepts

« Human-centered computing — Accessibility theory, con-
cepts and paradigms; User models.
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1 Introduction

“Ability” is a core, but often implied, concept in human-computer
interaction (HCI) and accessibility; for example, speech-language
pathologists work with patients to assign augmentative and alter-
native communication (AAC) technologies based on patients’ abili-
ties [19], usability professionals study how fast and effectively users
are able to navigate through websites [11], and researchers mea-
sure text entry efficiency when evaluating new input devices [135].
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These engagements with “ability” in HCI and accessibility are often
unidirectional in the sense that information is obtained about the
design of systems based on their usage, but systems come to learn
nothing of their users’ abilities and have no capacity for represent-
ing those abilities even if they did [124, 125]. By contrast, some
authors have envisioned a more bidirectional user-system relation-
ship, where a user acts on a system through their abilities, and
the system responds to the user accordingly. For example, Gajos
et al. [25-27] showed how desktop user interfaces could be auto-
matically generated in response to a user’s observed abilities as
demonstrated in a testbed. Evenson et al. [18] described systems
designed to respond to users’ latent abilities as they arise in dy-
namic worlds. Wobbrock et al. [124, 125] articulated a vision of
ability-based design, where systems model and respond to a user’s
situated abilities. However, even Wobbrock et al’s articulation of
ability-based design stops short of conceptualizing what “ability”
actually means.

Ability-based design [124, 125] is now over a dozen years old, and
has highlighted the importance of developing computing systems
that are responsive to users’ abilities. Numerous researchers and de-
signers have engaged with the concept, including for young adults
with intellectual disabilities [7, 8], psychomotor and cognitive user
modeling for wheelchair users [40-42], smartphone interactions
for older adults [90-92], children with motor disabilities [110], im-
proving pointing techniques in graphical user interfaces [120], and
for designing accessible outdoor activities [2]. It has even inspired
Android applications capable of detecting certain abilities and rec-
ommending suitable assistive technologies [118]. But despite its
uptake, ability-based design has never satisfactorily articulated
“ability.” For a concept so central to this design perspective to have
remained unexamined is concerning; we therefore aim to address
that omission in this work.

Most manifestations of ability-based design take piecemeal and
ad hoc approaches to considering or modeling ability, approaches
that are narrowly in service of the creation of a specific product
but that lack any deep engagement with ability itself (e.g., [25,
70, 71, 91]). These disparate manifestations reflect the limited un-
derstanding of how to utilize models of ability beyond HCI that
clinicians and researchers in other fields have developed. As interac-
tive technologies become increasingly informed by and deployed in
other fields’ settings (e.g., medicine, therapy, social science, sports),
understanding “ability” through these models as whole-body, so-
cioeconomic, situational, and environmental phenomena becomes
increasingly important. Thus, to further ability-based design, a
deeper consideration of ability must be made, one that enables new
approaches to conceptualizing, measuring, or modeling ability as
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translatable across devices, interfaces, contexts, and activities, al-
lowing for “ability” to be usefully reified by interactive computing
systems.

In this work, we move from implicit notions of ability to concrete
notions of ability in order to solidify this construct for ability-based
design. We focus on motor ability to demonstrate this move to
concrete notions of ability—using metrics that characterize motor
ability and relating these metrics, and “ability” more generally, to
conceptual user models [74]. In so doing, we argue that for a system
to robustly consider ability, it must: (1) consider metrics for ability
within and beyond the field of HCI; (2) consider inputs that arise
from a variety of data-capture methodologies and sources; and (3)
consider how metrics complement and attenuate each other. This
work highlights the multifacted nature of motor ability, and ability
more broadly, through the synthesis of multiple definitions and
metrics for these concepts across fields.

2 Related Work

In this section, we review the research efforts that are similar to
ours, namely that have attempted to clarify the notion of “ability”
in some respect. As there have been relatively few such efforts and
many of these efforts used constrained definitions of ability, this
section focuses only on salient examples; however, the rest of this
paper is devoted to reviewing, organizing, and synthesizing how
other prior work, especially in disparate fields, has shed light on
“ability”

Nolte et al. [74] described how considering the intertwining
nature of users, tasks, and contexts is imperative when designing a
system using ability-based design. They described a modification of
conceptual user modeling that emphasizes the union of task, user,
and context. While Nolte et al’s framing builds upon ability-based
design, it offers little information on how designers and researchers
can define or measure “ability” itself for each of task, user, and
context [73]. We build on Nolte et al’s work by examining how
task, user, and context can be solidified with a firmer notion of
“ability” in hand.

Other work that touched upon a conception of “ability” was
Vanderheiden’s vision for a Global Public Inclusive Infrastructure
(GPII). This project, formulated independently of ability-based de-
sign but consistent with its goals [124], proposed an infrastructure
that could enable ability-based design [112-117]. Specifically, the
GPII aimed to facilitate researchers, clinicians, developers, families
and others the ability to customize information and communication
technologies to their personal needs, aligning with ability-based de-
sign’s goals of creating accessible technology by placing the burden
of adaptation on the technology, not the user. The GPII's authors
outlined a specific example implementation, the Library GPII Sys-
tem, which infuses the information and communication technology
resources that libraries provide with the infrastructure enabled by
the GPII, to create more inclusive libraries that facilitate access to
information for everyone [113]. Recently, the team has created and
tested an implementation of the GPII called Morphic, which eases
access to a computer’s accessibility features through a large button
strip as well as a system that saves users preferences for persis-
tence across devices [111]. However, Morphic relies upon users to
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specify their preferences for accessibility modifications, rather than
automatically adjusting to observed or reported abilities.

Kondraske developed an early PC-based human performance
measurement system [50, 51] that quantified a user’s motor control,
coordination, stability, and range of motion, among other things.
While this system looked to comprehensively measure human per-
formance, it’s ability to translate its measurements on specific com-
puter input tasks to a general notion of “ability” is limited.

Similarly, Koester et al. created a PC-based ability assessment
system called Compass [47]. Compass had four components, includ-
ing a client interface for ability assessment, a clinician interface
for test configuration, a data visualization interface for viewing
results, and a tele-rehabilitation interface for conducting remote
assessments. Compass primarily covered keyboard, pointing de-
vice, and single-switch use. It was shown to be a valid and reliable
means of assessing these computer input abilities [48, 49], but did
not broaden beyond such abilities.

Building off this tradition of PC-based test beds, Gajos et al. de-
vised the notion of an “ability-based user interface,” which could be
automatically generated by their system, SUPPLE [24-26]. Gajos et
al’s test bed involved mouse clicking, pointing, movement, drag-
ging, and list selection. These behaviors were captured with regres-
sion models and used by a decision-theoretic interface generation
algorithm that could minimize the “cost” of operating a user inter-
face, which was shown to be more successful for people with motor
disabilities [27]. Along with a user’s motor abilities, SUPPLE could
take into account a user’s preferences as well [24, 25].

Persad et al. described how to measure human capabilities to
support inclusive design evaluations [80]. They provided guidelines
for designers, describing sensory, cognitive, and motor capabili-
ties, and their respective lower-level categories. Specifically, for
motor control, they distinguished upper-limb capabilities and gross
body-movement capabilities. This work was extended through a
topological data analysis of these categories through 39 measures
of ability [79]. This work also clustered individuals by varying ca-
pability types, thereby creating granular personas, but it offered a
rather limited view of “ability,” not considering any environmental,
contextual, situational, social, or other factors.

Reyes-Cruz et al. provided specific competencies that blind or
low vision individuals develop to carry out various tasks [84]. Their
work supports the claim that disability is largely structural, high-
lighting the unique routines and preferences individuals with dis-
abilities must employ. They argue that these competencies should
be considered “abilities” in any system that attempts to embrace
ability-based design.

Similarly, Johnson et al. examined “capability” and how to mea-
sure it for the purpose of providing a database for inclusive de-
sign [44]. They compared measurement types, ultimately outlining
the need for measurements that encompass activities, tasks, product
interactions, and component functions, which are measurements
that are not centered around specific activities.

These prior efforts somewhat conceptualize or operationalize
“ability” in limited, implied ways, offering some guidance for how
to incorporate measurements of ability in HCI. But none of them
tackle “ability” head on. We follow Nolte et al’s [74] integration
of task, user, and context to develop a three-axis space in which
measurements of ability can be placed.
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3 Towards Characterizing “Ability”

“Ability” is a large and somewhat intractable concept. Therefore, in
our efforts to carefully consider ability, we focus on motor ability,
demonstrating that even a narrow aspect of ability can be exceed-
ingly rich and nuanced. We approach this task by surveying metrics
that have different data sources (e.g., observational vs. self-reported)
as well as different data types (e.g., qualitative vs. quantitative). By
reviewing a large number of metrics that attempt to capture some
aspect of motor ability, we show that expanding beyond metrics
used in human-computer interaction (HCI) to characterize “ability”
provides a rich view; indeed, these metrics can be utilized in HCI
as well.

We sourced classification schemes for “ability” from medicine, re-
habilitation engineering, physical and occupational therapy, biome-
chanics, sports science, ergonomics, and HCI. To extract a fair and
representative picture of ability across these fields, we identified
relevant literature through multiple mechanisms: overall query
searching, forwards and backwards snowballing, and field-specific
query searching [127].

We utilized query searching of PubMed,! the ACM DL,? and
IEEE Xplore® to identify papers of interest. Our query had three
categories, and within a category the "OR" condition was used,
while between categories the "AND" condition was used. The first
category utilized common keywords to describe disability;* the
second used keywords to describe classification schemes;’ the third
used descriptors of motor abilities.® The search was over paper titles
and metadata. These initial queries primarily identified literature
that utilized existing measures of ability within their own research,
but also identified literature that developed measures of ability. In
the former case, the original source for the metric cited within the
queried literature was accessed.

Along with identifying literature, our search identified how abil-
ities are measured in different fields. These results helped define ad-
ditional field-specific queries. For example, rehabilitation medicine
utilizes terms such as “upper arm rehabilitation measures” or “gross
motor function measures.” From here, we employed multi-level
snowballing and reverse snowballing [93] to identify seminal pa-
pers, specific ability models, critical analyses of such models, and
insights into how such models could be employed in ability-based
design. We also identified themes and metrics from the Shirley Ryan
AbilityLab Rehabilitation Measures Database [1].

Our final identified body of literature was separated into three
areas that arose from themes we identified in the literature: (1)
measures characterizing body mechanics, (2) measures describing
quality of life and activities of daily living, and (3) measures of
technology proficiency and use, which were largely from HCI. The
literature from outside HCI, mostly in (1) and (2), was separated
by how ability is viewed irrespective of field, as there is consider-
able overlap between fields for many of the metrics in how they
are employed. This separation also highlights the two ends of a

!https://pubmed.ncbinlm.nih.gov/

https://dl.acm.org/

3https://ieeexplore.ieee.org/Xplore/home.jsp

4Keywords for disability: disability, impairment, ability.

5Keywords for classification: model, classification, system, assessment, scale, level.
6Keywords for motor abilities: motor control, motor, strength, ambulation, coordina-
tion, mobility, range of motion.
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spectrum along which many fields view the body’s ability. Fur-
ther, this separation also facilitates general translation to HCI, and
helps to understand which measures could inform, or be adapted
to, ability-based design. The following described measures are a
representative sample of the measures identified in the literature.
These measures were chosen to represent the range and diversity
that motor ability occupies, the types of measurements available,
and the prominence and acceptability of use.

3.1 Body Mechanics as “Ability”

Characterizing body mechanics is a fundamental method of mea-
suring ability and is a common tool used to diagnose and track
ability changes in fields such as medicine and rehabilitation [5].
Body mechanics can represent ability in multiple ways: directly
as they are measured, indirectly as they are extrapolated to bodily
function, or somewhere in between. In this subsection, we review
the ways in which body mechanics can be used as measures of
ability.

Body mechanics can be classified into descriptions of the posi-
tions of the body in static or dynamic conditions (kinematics), and
the forces and moments that generate these positions (kinetics).
Body position and movement are commonly measured through go-
niometers, motion capture, and inertial measurement units (IMUs).
Body output forces and torques are measured through force plates,
load cells, pressure sensors, and dynamometers. The generation of
these forces and torques can be examined by proxy through tools
that measure muscle activity, such as electromyography (EMG) [6].

The signals from these biomechanical sensors can be employed
in computer systems to characterize motor control. For example,
motion capture and other signals are employed in OpenSim and
other musculoskeletal simulation tools to understand mechanisms
of motor control [15, 97], or in the gait deviation index (GDI), an
index of gait pathology for cerebral palsy [94]. One use of EMG
is to calculate muscle synergies, or common motor modules of
control [104], which can be used to calculate the dynamic motor
control index during walking (Walk-DMC), a measurement that
uses EMG to describe the variability of a user’s motor control while
walking [103]. Indices such as the GDI or Walk-DMC can offer
clinicians and researchers tools to understand the biomechanical
impact of a disability as a numerical value.

These biomechanical signals can be used in two ways: (1) as
measures of ability in assessments, or (2) as input to control com-
puter systems [53, 89]. In the former case, biomechanical signals
and the tools used to collect them are often utilized as measures to
determine if someone falls with a “normal” range from a medical
perspective. For example, using a system that tracks joint angles
to identify range of motion is not clinically meaningful without
a normative reference range for joint mobility. Such normative
comparisons are considered necessary in medicine for diagnosis.
For ability-based design, diagnosis or a comparison to “normal” is
not the goal; thus, there is an expanded opportunity to use these
metrics as purely observational values, ones to which computing
systems might respond.

Clinicians often utilize physiological descriptors of how body
mechanics might be altered or affected. These descriptors include
topographic indicators, such as paraplegia or tetraplegia for cerebral
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palsy (CP), spinal cord injury (SCI), and stroke, among others [29,
69, 78].

Many measures of ability describe information about body me-
chanics from a functional, non-task-specific perspective. These mea-
sures include range of motion, dexterity, strength, coordination,
balance, and sensory function. For example, hand-grip strength,
measured as a maximum voluntary contraction, is a common met-
ric for monitoring sarcopenia [65, 68, 86, 99]. The International
Standards for Neurological Classification of Spinal Cord Injury (IS-
NCSCI) by the American Spinal Cord Injury Association (ASIA)
classifies SCI by the level of retained motor and sensory function af-
ter injury [87]. These levels are determined by examining sensation
and muscle function within specific dermatomes and myotomes,”’
respectively. This information is used for the ASIA impairment
scale (AIS) [69], a five-point letter-grade scale based on the Frankel
classification of spinal cord injury [22].

Another assessment of body mechanics is the Fugl-Meyer as-
sessment, a standard measurement tool to monitor stroke recovery
as well as multiple sclerosis or traumatic brain injury [82]. Itis a
226-point scale, with its items separated into five areas: (1) motor
function, separated by upper and lower extremities, (2) sensory
function, (3) balance, (4) joint range of motion, and (5) joint pain.
Each item on the assessment is graded on a 3-point ordinal scale
where 0 = “cannot perform,” 1 = “performs partially,” and 2 = “per-
forms fully” [23, 29]. Such metrics that describe functional, non-
task-specific ability, could be leveraged in ability-based design as
generalizable metrics that translate across multiple activities.

Paralympic classification provides a substantial set of guidelines
for functional classification of a body’s abilities, as the aim is to
minimize the disability’s effect on the competition’s fairness for the
athletes [13]. Disability is separated into 10 types: muscle strength,
range of movement, hypertonia, ataxia, athetosis, short stature, am-
putation, leg length difference, vision impairment, and intellectual
impairment. Athlete assessments have evolved over time to use
qualitative descriptions and quantitative ratio-based scales, and
moving away from ordinal scales and ratings [107-109].

Other measures of ability in body mechanics include task-specific
measures that are designed to be proxies of functional body me-
chanics. For example, the Box and Blocks test [66] and Nine Hole
Peg Test [46, 67] capture hand and finger dexterity, respectively,
through manual manipulation tasks. Similarly, the Action Research
Arm Test (ARAT) describes grasp, grip, pinch, and gross move-
ment [54, 131].

Furthermore, other metrics blend measures of body mechanics
with bodily function during activities of daily living. For example,
the Movement Disorder Society’s Unified Parkinson’s Disease Rat-
ing Scale (MDS-UPDRS) has four sections: non-motor aspects of
experiences of daily living, motor aspects of experiences of daily
living, a motor examination, and motor complications [33]. Further
metrics that rely on activities of daily living alone are described in
the next section.

In medicine, measures are commonly taken periodically to diag-
nose and assess changes in a person’s body mechanics and function.
Given the various ways that body mechanics can be measured, from

7A dermatome is an area of the skin innervated by a segment of the spinal cord; a
myotome is a group of muscles that are innervated by a segment of the spinal cord
[69].
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body-worn sensors to clinical assessments, and from a fine-to-gross
motor control, these measures lend themselves well to assessing
motor ability by observing a range of biomechanical activities.

Holistically, the biomechanical view of ability could be consid-
ered “how a body functions.” This locates ability directly in the
body, and is less emphasizing of outcomes than ability-based de-
sign, which in its ability principle is focused on ensuring systems
respond in some effective way to a user’s abilities. Whereas this
principle is system-focused, the biomechanical view of ability is
more person-focused. It is not so much about a person performing
to bring about a result in the world, but about a person’s functioning
as a property of the body itself. The implications for ability-based de-
sign are that, under the biomechanical view, ability is to be codified
as functional capacity, almost independent of what that capacity
can produce in the world. This may seem counterintuitive to the
goals of ability-based design, in that ability-based systems are those
that are meant to uphold what a user can do. However, systems
that disregard the body’s base functioning capacity ignore informa-
tion about ability that is task-agnostic and therefore generalizable.
Furthermore, this view of ability helps to emphasize that what a
body can do need not always be performance based, but can also
be about how the body comfortably exists in the world.

3.2 Daily Activities and Quality of Life as
“Ability”

Instead of directly measuring motor function, another approach is
to measure a person’s ability to do activities of daily living and any
symptoms or limitations present during such activities. These mea-
sures can either be through patient-reported outcomes or clinician
observation. For example, the gross motor function classification
system (GMFCS) and manual ability classification system (MACS)
are both systems that describe gross—meaning overall—motor func-
tion for children with cerebral palsy [81]. These two motor ability
measures are both five-level ordinal scales determined by clini-
cian observation. The first scale, GMFCS, describes self-initiated
gross motor function during and between everyday activities such
as walking, standing, sitting, and any concurrent reliance on as-
sistive devices for children aged 6-12 [76, 81, 129]. Palisano et al.
[77] expanded and revised the GMFCS (as the GMFCS-E&R) to
support kids aged 12-18 to better reflect the International Clas-
sification of Functioning, Disability and Health [75], and reflect
both the patient’s capability and performance and the influence of
environmental factors. The second scale, MACS, is an upper-limb
complement to the GMFCS that describes activities of daily living
such as playing or dressing [17, 81].

Although the GMFCS and MACS are specific to cerebral palsy,
there are also examples of tests that are agnostic to diagnosis.
For example, the disability of the arm, shoulder and hand (DASH)
questionnaire was specifically designed to be able to relate upper-
extremity conditions by burden [35, 36]. The DASH is a 30 item
questionnaire where each question is graded on a 5- or 7-point Lik-
ert scale. It includes questions that ask about a person’s symptoms
(pain, weakness, stiffness, tingling, numbness) as well as functional
status (physical, social, and psychological) [36]. A shortened ver-
sion of the DASH questionnaire, called QuickDASH, which contains
11 of the items of the original DASH, has also been developed [9].
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Instead of relying on patient reported outcomes or clinician
observations, some ability assessments measure performance out-
comes of activities of daily living. For example, the Jebsen-Taylor
Hand Function Test times patients as they perform a variety of
tasks [85]; however, the test has been shown to have poor correla-
tion with patient-reported outcomes [14], calling its validity into
question.

In contrast to the biomechanical view of ability, measures and
metrics from activities of daily living (ADL) and quality of life (QoL)
orient ability as an interplay between the body and the outside
world. The biomechanical view of ability is isolationist; ability ex-
ists unchanged regardless of context or the world around it because
it is located entirely in the body. By contrast, when ability is viewed
through an ADL and QoL lens, it is drawn out of the body and lo-
cated as an interplay of the body and the world. This blending aligns
closer to the view of ability in ability-based design, especially with
its treatment of so-called “situational impairments” [95, 121]. Fur-
thermore, many metrics from ADL and QoL represent a subjective,
first-person experience of ability. Indeed, many current examples
of ability-based design take a performance-based view of ability
(e.g., [84]), but ADL and QoL measures can help us to consider why
performance may be altered and what effect on someone’s life it
has. An ability-based system that integrates such measures could
use this knowledge to better support their user in accomplishing
everyday tasks.

3.3 Human-Computer Input Performance as
“Ability”

The field of human-computer interaction (HCI) has developed many
measures to quantify how people interact with user interfaces,
whether digital or physical. These measures are often task-specific.
For example, many measures focus on information transmission
via pointing, including target selection speed, target selection accu-
racy, and Fitts’ law throughput [56, 58, 102, 132]. Text entry is also
a canonical form of information transmission to computers, and
metrics such as text entry speed [57], accuracy [100], and through-
put [135] quantify input performance. Numerous additional metrics
have been developed for text entry as well [3, 60, 101, 119, 134].
Similar notions of input efficiency have even been developed for
brain-computer interfaces [128].

Fitts’ law [21] was first used as a model in HCI [12] to relate the
time required to select a target to target size and movement distance
in aimed pointing tasks. Different approaches have been taken to
building Fitts’ law models, with details varying as to how experi-
mental procedures are run, how pointing tasks are configured, and
how regression coeflicients are established [10, 39, 61, 70, 71, 102,
106, 126, 132, 133]. Further, of key importance is Fitts’ throughput
metric [58], a form of information transfer rate (ITR), which unifies
speed and accuracy as a measure of efficiency. (Similar constructs
have been developed recently for text entry [135].) This view pri-
marily holds that people’s abilities are measured by input efficiency.
Although these measures were not necessarily created as explicit
measures of ability, they are often used as such in HCI (e.g., [25]).
Ability-based design itself had an early focus on pointing device
performance for people with motor impairments [120].
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Beyond quantifying efficiency in aimed pointing movements,
other metrics in HCI provide descriptive statistics for how a user
moves through space when selecting a target. Mackenzie et al. [59]
established additional accuracy measures for mouse movement
when selecting a target. These measures include movement variabil-
ity, target re-entry, task axis crossing, movement direction change,
orthogonal direction change, movement error, and movement offset.
Keates et al. [45] extended these metrics for users with motor impair-
ments, which were further built upon by Hawang et al. [38]. While
the original intent of these metrics was to describe the dynamics
behind overall pointing speed, accuracy, and efficiency [38, 45, 59],
utilization of these movement metrics to inform system design
has been shown to be beneficial for individuals with disabilities
[122, 123]. This work presents a promising avenue for these metrics
to represent ability in ability-based design.

Unsurprisingly, given the history of HCI, many of these metrics
describe interaction with a pointing device and cannot always be
applied to alternative input devices. For example, touch interactions
unfold over time and space, and multiple touches can occur con-
currently. Kong et al. [52] developed new metrics to quantify the
time-varying behavior of touches given their non-instantaneous
action and 2-D footprint. These metrics were inspired by those from
MacKenzie et al. concerning mouse movement [59].

More recently, with the advent of ubiquitous computing, HCI has
utilized sensors originally from biomechanics and health sensing
to measure ability or accommodate situational impairments [121].
For example, accounting for perturbations in touchscreen typing
while walking using accelerometers has shown to increase typing
accuracy [30]. A similar correction was employed to measure and ac-
count for the effect of hand position while touchscreen typing [31].
Mariakakis et al. [63] detected inebriation using a combination of a
phone’s built-in sensors and a small battery of human performance
tasks on a touch screen that took about four minutes to perform.

These advances in ubiquitous computing have allowed for the
monitoring and diagnosis of abilities. For example, motor manifes-
tations of Parkinson’s disease (PD) were detected while typing on
a touch screen [4] and on a keyboard [28]. These and other studies
were described in an extensive review of remote assessments of
hand function [34], which covered people with PD, stroke, multiple
sclerosis (MS), spinal cord injury, and amyotrophic lateral sclerosis
(ALS).

Individual efforts at employing ability-based design offer differ-
ing perspectives on how to characterize “ability.” Sarcar et al. [91]
used models of tremor, dyslexia, and memory dysfunction for text
entry performance on touchscreen devices to optimize keyboard
key-size and the number of word predictions offered. Another ap-
proach to keyboard optimization utilized user-specific models of
ability that incorporated how a user’s abilities might differ when
moving in different directions to optimize keyboard layout [70, 71].
As noted, SUPPLE automatically generated user interfaces by rep-
resenting a user’s pointing abilities as regression models that pa-
rameterized a decision-theoretic optimization process [25-27].

Alongside specific implementations of ability-based design, other
implementations of user-specific modeling offer insight on how
to measure and adapt to ability. For example, Findlater and Wob-
brock [20] modeled a user’s keypresses to adapt the underlying
classification model for a touchscreen keyboard. Hurst et al. [37]
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detected users with and without pointing problems and predicted
whether preventing accidental clicks and slips [105] would improve
pointing issues.

Other systems take approaches that are about minimizing human
error. For example, models of intelligence [40, 43] and psychomotor
ability [42] have been used to optimize how a machine provides
error correction and automation. These models were developed by
assessing the motor control and ability to navigate a wheelchair by
study participants.

Assessing a person’s ability to interact with technology is also
necessary to help prescribe interventions and assign assistive de-
vices. As noted above, Koester et al. [47] built Compass, a software-
based assessment tool for clinicians to measure desktop computer
skills in order to select appropriate assitive interventions. On a
smartphone, the SmartAbility app [118] maps abilities to specific
assistive technologies based on user performance in a variety of
tasks.

A highly apparent theme running throughout these metrics is
how performance-oriented they are. Speed, accuracy, and efficiency
are of primary importance where input devices and techniques are
concerned. Indeed, this is not surprising for understanding “ability”
in HCI, as pointing, text entry, and touch are pervasive and repeti-
tive tasks. But such a view greatly limits a more holistic account of
ability, even motor ability. People’s abilities, even concerning com-
puter use, extend well beyond their psychomotor task performance
with input devices. Although ability-based design has been mostly
applied in computing contexts (with some exceptions, e.g., [110]),
it would benefit greatly from wider treatments of ability than just
users’ psychomotor behaviors. For example, cognitive, learning,
and social abilities are highly relevant to computer use today.

Our extensive literature review has revealed that “ability” has
primarily been characterized by biomechanical functioning, activi-
ties of daily living (ADL) and quality of life (QoL) issues, or human
performance with computer input devices. Each of these views
does indeed capture something about ability, but as to their use in
ability-based design, the first and third tend to be overly narrow,
while the second is overly broad and specific to everyday tasks.
Something else is needed. We turn to this challenge in the next
section.

4 Distilling “Ability” for Ability-Based Design
To organize the many metrics and measures presented above, we
offer a framework for characterizing “ability” This framework es-
tablishes a robust concept of ability that represents its multiple
facets, not just any one view encountered thus far. Indeed, this
framework does not redefine any individual definitions of ability,
but rather coalesces and synthesizes them. This framework is built
of off conceptual user models that relate the user, context, and task
[74]. Further, this framework is capable of representing multiple
models of disability (e.g., social, medical).

Our ability framework is built of three axes: the user axis, task
axis, and context axis. The user axis represents who is observing
the metric, the context axis reflects the user’s environment, and the
task axis reflects the user’s current situation. Each axis is defined
by endpoints that reflect the span of the axis; the user axis extends
from self-reported metrics to observed-by-others, the context axis
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spans metrics that represent internal to external context, and the
task axis extends from task-agnostic to task-specific metrics. With
this framework, any metric of ability can be placed inside the space
created by these axes (Figure 1). Further, to represent “ability” in
ability-based design, an interactive system should embody multiple
points within this space, even aiming to occupy the extents of the
three axes by employing multiple metrics.

These axes are grounded in work that relates user, context, and
task [74], while also reflecting arguments that have been made to
support multiple models of disability in HCI. Mankoff et al. [62] dis-
cusses flaws in models of disability, arguing that despite these flaws,
these models still have their benefits, as long as they are working
in concert with each other. The framework we have built to repre-
sent ability parallels this point, intertwining social, environmental,
health, and other factors that compose ability and disability.

In addition, when utilizing this three-axis system, in order to
reduce the burden on the user, one should aim to minimize the
number of tasks the user must complete. In addition, when alter-
native metrics are available, one should limit the use of disease-
and diagnosis-specific measures to limit the storage of personally
identifiable information.

4.1 User Axis: Metrics that Reflect Different
Points of View of the User

The user axis reflects the who is observing the user and spans
from “Ist person” to “3rd person.” The first-person metrics are
self-reported measures, while third-person metrics are observed
by a third-party, whether that be a clinician, researcher, computer
system, or other outside observer. Metrics that are composed of
first-person and third-person data types fall between the two end-
points of the axis. Biomechanical measures, HCI input metrics, and
wearable health data are some of the fundamental measures of
ability that can exist along this axis. Among biomechanical mea-
sures, measures like the Fugl-Meyer assessment [23], which gives
a complex understanding of both motor and sensory function, as
well as range-of-motion and pain, would fit in the middle of the
axis, as it is composed of both self-reported information and clin-
ician observations. Instances of biomechanical metrics that fall
towards the third-person end of the axis include wearable health
data, obtained both in single instances and by continuous tracking.
Additional consumer-facing signals could be heart rate and inertial
sensing, signals common to most consumer smartwatches. Less
common in consumer electronics, but under active investigation
in HCI, are electromyography (EMG) measurements [16]. Quality
of life metrics such as the disability of the arm, shoulder and hand
(DASH) questionnaire [35, 36] and QuickDASH [9], populate the
first-person end of the user axis, as they are reflections by the user.

Existing work in HCI that includes personalization, including im-
plementations of ability-based design, provide thoughtful examples
on how to marry personalized interaction with HCI metrics to cre-
ate decontextualized measures that could exist along the user axis.
For example, Mitchell et al. [70, 71] implemented an orientation-
specific Fitts’ law for each user in the design of their personalized
keyboards. Similarly, Trudeau et al. [106] utilized Fitts’ law to fur-
ther examine differences in performance depending on orientation
of the thumb when using a mobile phone. Taking into account
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Task-specific
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Figure 1: Ability Axes as a three-axis space: the user axis, the
context axis, and the task axis. The user axis extends from
“1st person” to “3rd person,” the context axis from “internal”
to “external” contexts, and the task axis from “task-agnostic”
to “task-specific.” These axes are arranged to form a three
dimensional axes space that represents ability.

the impact of movement orientation beyond just keyboards could
help to build interfaces that are better suited to a user’s abilities.
Findlater et al’s [20] personalized models for 10-finger touchscreen
keyboard typing also shows how individualized input models could
be leveraged in ability-based design. These examples highlight just
a small portion represented by HCI input metrics to capture ability.

4.2 Context Axis: Context-Dependent Measures
of Ability

The context axis captures ability measures reflecting the environ-
ment the the user is operating in. These environmental factors are
both external and internal to the user [124]. Of the metric types
that could fall along this axis, wearable health data and ubiquitous
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sensing data are especially pertinent, as well as quality of life mea-
surements. This axis is organized on one end by measures that
capture factors external to the user, while the other end is occupied
by factors internal to the user.

Measuring external factors that are environmentally context-
dependent helps to account for scenarios such as situationally in-
duced impairments and disabilities (SIIDs) [95, 96, 121] as well
as other disabling scenarios. For example, when walking, a user
might have more errors due to movement or looking around at their
surroundings that could be measured and corrected for [30, 72].
Alternatively, a device could sense when a user switches from using
the device with two hands to one, perhaps due to needing to carry
other objects at the same time [32].

Considering changes in ability that are internal to the user is
also for the context axis. For many individuals with disabilities and
chronic illness, there is significant fluctuation in ability or pain on
a daily basis or even within a single day; being able to measure that
is important [55, 130]. Accounting for these changes could be done
specifically through wearable health data and feedback from the
user. Although this end of the axis is user-centered, we chose to
separate this from the user axis given the importance of considering
the user’s abilities not just on average, but in context.

4.3 Task Axis: Task-Dependent Measures of
Ability

The last axis we consider for constructing our ability framework is
the task axis. This axis is built to bring together the behaviors a user
has during specific tasks when interacting with technologies and
the many existing metrics that already describe these tasks. The
two extremes of this axis are task-agnostic and task-specific. When
considering where a metric might fall on this axis, it is important
to consider whether it explains a user’s ability to do a specific task
or not. If the metric addresses a specific task, such as text input
or an activity of daily living (ADL), it is task-specific. If a metric
generalizes across tasks, it is still task oriented, but it would fall
towards the middle of the axis. If a metric does not describe ability
as an outcome or output, it is task-agnostic. While the importance
of task-specific metrics is self-evident, also having task-agnostic
metrics compensates for instances when task-specific metrics are
not available and additionally provides a view of the user that is
not only task- or outcome-oriented. For example, in the case of text
input, only including text entry metrics for an application would fail
to address how one might need to navigate between that experience
and something else, whether an app or website.

Qualitative measures that reflect quality of life, as well as quan-
titative HCI input metrics that are not task-specific such as touch
metrics [52], would fall on the task-agnostic end of this axis. The
task-specific end of the spectrum would largely be occupied by HCI
metrics such as text entry measures, as well as metrics that describe
ADL. Metrics such as throughput and information transfer rate
(ITR) would fall in the middle of the axis. This placement on the
axis is because these metrics both have the ability to be task-specific
as well as task-agnostic. ITR and throughput are specific to target
selection tasks, but also can be generalized for tasks such as text
entry.



ASSETS 24, October 27-30, 2024, St. John’s, NL, Canada

Alone, these axes each provide unique ways in which ability
can be represented. However, the true benefit of these axes lays
in relating them to each other and representing ability as a multi-
faceted concept. For example, to represent a user’s ability with
HCI text entry metrics, it is not just representing their ability as
task-specific on the task axis, but also representing their ability as
observable by a third-party on the user axis. The ability to generate
text is also highly dependent upon the user’s context; for example,
the user could be walking at the same time they are generating
text. Using only one metric that represents one point in the space
of these axes fails to account for the complex nature of ability that
is necessary for systems that implement ability-based design.

5 Considering Personas for Ability-Based
Design

To demonstrate the utility of our three-axis ability framework, we
offer example personas as plausible fictions, which demonstrate
how ability measures can be chosen to thoroughly occupy those
axes (Figure 2). These personas show individual possibilities of the
axes, and are not meant to represent the full extent and diversity
of motor ability, but rather be illustrative of the utility of the axes.
Additionally, the utilization of personas can be a helpful exercise for
the implementation of ability-based design to successfully combine
and consider users, contexts, and tasks. It is important to note that
we use personas here to illustrate positions in our 3-D space, not as
user caricatures that codify stereotypes or reinforce dominant pre-
conceptions, for which personas as design instruments have been
reasonably criticized [64]. To reinforce this caveat, we deliberately
do not give our personas human names. Rather, think of them as
points in our “ability space.”

5.1 Persona Requiring Alternative Access

This persona requires alternative input access to use their tablet,
alternating between access methods of switch-scanning and eye-
tracking. They must alternate between these methods due to envi-
ronmental conditions that do not permit eye-tracking or because of
fatigue from eye-tracking. The most common task this persona uses
their tablet for is composing text, whether emails, text messages,
or documents.

To consider relevant measures of ability for this persona, we con-
sider the axes of our framework both independently and together.
Given that many tasks this persona performs are related to text
entry, we would add a large number of text entry metrics to the task
axis. These metrics are all fairly low-cost, both computationally
and in terms of the effort needed to integrate them into a computer
system. For the context axis, we could consider internal context,
specifically fatigue, as this persona fatigues from use of the eye-
tracker. While user fatigue could potentially be measured directly
by observing how movement patterns of their eyes change, we also
could use task-specific metrics to observe fatigue. Finally, for the
user axis, we could look at metrics that could quantify the user’s
motor abilities such as their dexterity and spasticity. These motor
abilities are considered so that during use of their switch scanner,
the system can understand how often accidental selections occur.

We can also go beyond this persona’s use case to consider more
individuals that use alternative inputs to access their technology
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and how their tasks and contexts differ. Beyond utilizing text entry
metrics, we could look at more general HCI metrics such as target
selection speed, target selection accuracy, Fitts’ law throughput
[56, 58], and information transfer rate [128]. These metrics fit a
variety of both tasks and contexts. We can also consider a user that
only sometimes uses alternative access, for example, someone that
alternates between using a tablet with touch and switch-scanning.
In this case, we can use touchscreen metrics [52] to monitor fatigue
during touch prior to the user changing to switch-scanning.

5.2 Persona with Limited Fine Motor Control

This persona has Parkinson’s disease, resulting in limited fine motor
control. Her primary interactions with technology are for commu-
nication purposes; she frequently calls, video-chats, and texts her
family and friends. She will often receive pictures and videos that
she likes to save for future reference. However, this persona has
difficulty navigating these tasks at times due to her tremor. It is
time-consuming for her to compose a text message, and sometimes
she will give up and call instead, even if it is inconvenient. Some-
times she will also decline a call that she meant to accept due to
her tremor. She has found adaptations by using a voice assistant,
but she is not entirely happy with this solution.

How might we go about characterizing the abilities of this per-
sona using our framework? Similar to the first persona, we can
consider a large number of text entry metrics for the task axis
[3, 100]. In addition, we can add general non-task-specific metrics,
such as touch metrics [52]. Given that this persona has Parkinson’s
disease, we can consider metrics for the user axis, such as Move-
ment Disorder Society’s Unified Parkinson’s Disease Rating Scale
(MDS-UPDRS), which contains components along the user axis,
given it’s reflection of both quality of life and motor movements.
Considering the context axis, we look at both external and internal
factors for this persona. Individuals with Parkinson’s disease often
have daily fluctuations in ability, especially as medication wears
off [83]. Furthermore, the motor manifestations of Parkinson’s dis-
ease might not be symmetric [88], and so her ability to do tasks
could vary significantly by which hand she was using to hold the
phone and use it. These symptoms are why it would be important
to consider onboard sensing to determine her grip pattern.

Expanding this persona to additional devices, one could consider
factors for the context axis, such as device-specific measurements.
For this persona, such device-specific measurements would trans-
late to input-specific measurements, for example, in the case of a
desktop computer controlled by a mouse, measuring jitter. Expand-
ing to other diagnoses beyond Parkinson’s, including the case in
which there is no diagnosis, one could add metrics to the user axis
such as disability of the arm, shoulder and hand (DASH) (35, 36] or
the shortened version, the QuickDASH [9].

5.3 Persona Experiencing a Movement-Induced
Situational Impairment

This persona works at home two days a week and the other days
works in an office. When she works in her office, she commutes by
bus and on foot. During her bus commute, she often reads books she
has downloaded onto her phone. Sometimes while on the bus she
answers emails, especially if she is running late. Only occasionally
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Figure 2: Example personas demonstrating how metrics to describe ability occupy the extents of the ability axes.

will she answer emails while she is walking to or from the bus. On
days that she is working from home, she often will take phone calls
while she is on a walk. During this time, she will sometimes have
to look at her phone to reference an email or her calendar.

To start constructing metrics around this persona, we first con-
sider the context axis, given that she is using her phone under
multiple different environmental conditions that will all influence
her ability to operate the phone accurately. The phone’s onboard
sensors can measure acceleration and rotation whether due to the
movement of the bus, or the user’s movement while she is walking
or handling the phone. If she is wearing a smartwatch, its onboard
inertial sensors can further be utilized to anchor the phone’s move-
ment and differentiate between her moving the phone and the
environment moving the phone. These measurements for the con-
text axis play into the task axis, as having highly precise movements
matter more when the user is composing an email as opposed to
when she is reading.

For the tasks she does, we would consider text entry metrics
[3, 119]. We additionally consider more general metrics that reflect
the user’s ability to operate her phone, specifically touch metrics
[52]. In the case of a user such as this persona, we would rely less
on the user axis, especially as she would have fewer, if any, clinical
metrics relevant to her.

Expanding beyond this persona to a more general persona under
a movement-induced situational impairment, we could utilize clini-
cal metrics that fall along the user axis, especially those relevant
to the effects of motion. For example, these metrics could reflect
a person’s proneness to fatigue as they walk or those who have
limited fine motor control, as individuals with limited fine motor
control would have even more difficulty composing emails on a bus
with extraneous motion.

6 Discussion

Our literature review uncovered three general ways that “motor
ability” has been characterized: by one’s biomechanical function,
by activities of daily living (ADL) or quality of life (QoL) issues, and
by use of input devices in human-computer interaction (HCI). All
three of these characterizations were limited in significant ways,
but taken together, they informed a rich perspective on ability.

Leveraging the above notions of ability, our three-axis ability
framework for ability-based design consisted of the user, the con-
text, and the task, enabling us to consider numerous metrics for
characterizing “ability” for our personas. We organized this axis
space to reflect current work in ability-based design [124] as well
as conceptual user modeling [74]. These axes are also designed to
be set together as a three-dimensional space to indicate that these
considerations cannot be fully separated when modeling ability. We
include Table 1, which details each metric we reviewed, explaining
where in the three-axis space it sits.

The extents of each axis were chosen to represent a range of
abilities. For the user axis, choosing both qualitative and quanti-
tative measures of ability allows for both unbiased measurements
as well as the user’s perspective on their abilities. To this latter
point, we stress that any system that uses ability-based design must
reflect a user’s abilities as the user sees them, not just as they are
computationally assessed. For the context axis, we chose the extents
to be internal and external. This choice was in view of literature
that argues for the importance of designing to account for natural
variations and fluctuations in abilities (internal contexts) [55, 124]
as well the social model of disability (external contexts) [98]. Finally
for the task axis, we chose extents that allowed the axis to reflect
the wide variety of metrics that are available for use. Many of these
are not task-specific or directly translate to activities involved with
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Table 1: Measures of Motor Ability and their Categorization

Mitchell and Wobbrock

Axis Location

Measure Assessment Method User Task Context References
. Computer Systems 3rd Person Midpoint Midpoint [5, 6, 15, 53, 89, 94,
Body Mechanics P P P 97,103, 104]
Clinician Observation 3rd Person Midpoint Midpoint [29, 69, 78]
. . Computer Systems 3rd Person Midpoint Midpoint 46, 65-68, 86, 99
Functional Body Mechanics Clinirc)ian Obyservation 3rd Person Midgoint Midioint %22, 23, 29, 69, 82],
87]
ADL Clinician Observation 3rd Person Task-specific ~ Midpoint (14, 17, 76, 77, 81,
81, 81, 85, 129]
QoL Self-reported 1st Person Midpoint Midpoint [9, 35, 36]
. Information Transmission 3rd Person Midpoint Midpoint [56, 58, 58, 102,
Target Selection 132]
Movement Patterns 3rd Person Midpoint Midpoint [38, 45, 59]
Text Entry Efficiency 3rd Person Task-specific ~ Midpoint [3, 100, 119, 135]
Touch Movement Patterns 3rd Person Task-agnostic Midpoint [52]
Situational Impairments Movement Patterns 3rd Person Midpoint External [30, 31, 121]
Disease Monitoring Movement Patterns 3rd Person Midpoint Internal [4, 28, 34]

technology, yet they reflect vital perspectives such as the user’s
perceptions of their abilities.

These axes reflect the interplay of different models of disability
stressed by other researchers in HCI. Mankoff et al. [62] and Mack
et al. [55] both emphasized the balance between medical and social
models and how each can describe different aspects of ability and
disability. The design of our axes also opens up the possibility to
use various metrics from a new perspective. For example, while
many of the metrics we described were clinical, such metrics could
be employed under contextual factors to describe natural internal
fluctuations or external environmental factors as well.

With these axes in view, practitioners of ability-based design
should be able to maximize coverage over the axis space to create
systems that are robust to users’ abilities, both objective and sub-
jective, translatable, yet specific across devices, contextualized to
the task at hand, and robust to external environmental conditions
and changes in a user’s abilities.

Although we specifically address metrics that measure motor
abilities for the scope of this paper, there are other measures of abil-
ity that influence motor ability, yet are not direct measures of motor
ability itself. For instance, the ability to access medication that im-
proves tremor from Parkinson’s disease is a contextual measure
of ability. We therefore must also consider larger environmental,
contextual, and social metrics when considering motor ability to
avoid creating systems that are not representative of users.

Furthermore, our framework’s axes represent how ability can
best be represented in an interactive system. Ability is, in reality,
an incredibly complex concept, one for which individual metrics do
not—and never can—fully encapsulate the lived experiences of the
individual they are characterizing. But the more our computing sys-
tems can accurately understand our abilities, the more responsive
they can be to accommodating them.

6.1 Limitations

A limitation of this work is that it only considered users’ motor
abilities. We incurred this limitation when building our framework
for ability-based design given the myriad metrics that represent
motor abilities. Our belief is that given the wide variety of metrics
that this infrastructure supports, the framework would be translat-
able to other types of abilities. Additionally, these axes could help
support the identification of new metrics to fill out the axis space
for these other ability types (e.g., cognitive, sensory).

This work stops short of actually implementing an interactive
ability-based system using our ability framework. Rather, we chose
to focus on our extensive literature review and synthesis to em-
phasize that HCI can integrate metrics from other fields for ability-
based design. Our three axes are also generally supported in litera-
ture as ways to model users [74], and so there is a strong foundation
for structuring these axes as we did.

Finally, this work focuses on the measurement of ability to aid
the implementation of ability-based design. We recognize that this
aspect is only one facet of the implementation of ability-based
design; design process is another, unaddressed here. Furthermore,
measuring ability, especially using clinical tools, leans towards the
medical model of disability; we juxtapose that with the context axis
that discusses metrics from the social model of disability [62, 98].

7 Future Work

This work outlined a framework for characterizing “ability” for
ability-based design, but did not exercise the framework in an
end-to-end design process through implementing an actual ability-
based system. We leave such an endeavor for future work. Doing so
would enable us to consider the framework and its many metrics for
possible inclusion in a working system, and to assess the “coverage”
of the three-dimensional space of the framework by the metrics
under consideration.
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While this work highlighted the move from implicit notions of
ability to concrete notions of ability for motor ability, we envision
that the framework we developed will extend to disabilities beyond
motor disabilities. We hope future work explores this transition for
other disabilities and furthermore, implements systems using this
framework for other disabilities.

The integration of clinical metrics into ability-based systems
raises privacy concerns that are not present in systems that rely
solely on traditional HCI metrics to capture ability. Systems that
use these metrics will need to adopt security practices that en-
sure proper storage and access of this information and additionally
ensure the user feels at ease with volunteering such information.
Furthermore, future work could investigate the correlation between
measures of ability outside of HCI to measures from within HCI so
that these HCI measures could act as proxy measurements. Finding
correlations could enable a system designer to reduce any reliance
on clinical metrics that have patient-sensitive information. More-
over, HCI-specific metrics showing high correlations with clinical
measures would allow for more metrics to be accessible to those
that have difficulty obtaining a clinical assessment [47, 48].

8 Conclusion

Current implementations of ability-based systems offer unspoken or
piecemeal approaches to defining and measuring ability, the central
concept in ability-based design [124, 125]. To erect a unified frame-
work for characterizing “ability,” we reviewed measures of motor
ability from the fields of rehabilitation, occupational and physical
therapy, medicine, biomechanics, HCI, and more. We described the
approaches these metrics take to measuring ability and organized
these metrics into a three-axis framework for ability-based design.
These axes are the user (from 1st person to 3rd person), context
(from the user’s internal context to the environment’s external con-
text), and finally, the task (from task-agnostic to task-specific). We
also provided example personas that utilize metrics that occupy
this three-axis space to demonstrate the utility of the axes. It is our
hope that by characterizing “ability,” the creation of ability-based
systems can be more informed, inclusive, and successful.
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